3 research outputs found

    Adaptive Re-Segmentation Strategies for Accurate Bright Field Cell Tracking

    Get PDF
    Understanding complex interactions in cellular systems requires accurate tracking of individual cells observed in microscopic image sequence and acquired from multi-day in vitro experiments. To be effective, methods must follow each cell through the whole experimental sequence to recognize significant phenotypic transitions, such as mitosis, chemotaxis, apoptosis, and cell/cell interactions, and to detect the effect of cell treatments. However, high accuracy long-range cell tracking is difficult because the collection and detection of cells in images is error-prone, and single error in a one frame can cause a tracked cell to be lost. Detection of cells is especially difficult when using bright field microscopy images wherein the contrast difference between the cells and the background is very low. This work introduces a new method that automatically identifies and then corrects tracking errors using a combination of combinatorial registration, flow constraints, and image segmentation repair

    Linear and Nonlinear Optical Absorption of CdSe/CdS Core/Shell Quantum Dots in the Presence of Donor Impurity

    No full text
    Linear and nonlinear optical properties in colloidal CdSe/CdS core/shell quantum dots with different sizes have been theoretically investigated in the framework of effective mass approximation. The electron states in colloidal CdSe/CdS core/shell quantum dots have been calculated using the finite element method. The intraband linear and nonlinear absorption spectra have been calculated for colloidal CdSe/CdS core/shell quantum dots with different sizes. In addition, the dependences of the linear and nonlinear refractive index change on the incident light energy have been calculated. In the last section of the paper the second- and third-order harmonic generation spectra have been presented
    corecore